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Abstract

Diisocyanates (dNCOs) are low molecular weight chemical sensitizers that react with autologous 

proteins to produce neoantigens. dNCO-haptenated proteins have been used as immunogens for 

generation of dNCO-specific antibodies and as antigens to screen for dNCO-specific antibodies in 

exposed individuals. Detection of dNCO-specific antibodies in exposed individuals for diagnosis 

of dNCO asthma has been hampered by poor sensitivities of the assay methods in that specific IgE 

can only be detected in approximately 25 % of the dNCO asthmatics. Apart from characterization 

of the conjugates used for these immunoassays, the choice of the carrier protein and the dNCO 

used are important parameters that can influence the detection of dNCO-specific antibodies. 

Human serum albumin (HSA) is the most common carrier protein used for detection of dNCO 

specific-IgE and -IgG but the immunogenicity and/or antigenicity of other proteins that may be 

modified by dNCO in vivo is not well documented. In the current study, 2,4-toluene diisocyanate 

(TDI) and 1,6-hexamethylene diisocyanate (HDI) were reacted with HSA and human hemoglobin 

(Hb) and the resultant adducts were characterized by (i) HPLC quantification of the diamine 

produced from acid hydrolysis of the adducts, (ii) 2,4,6-trinitrobenzene sulfonic acid (TNBS) 

assay to assess extent of cross-linking, (iii) electrophoretic migration in polyacrylamide gels to 

analyze intra- and inter-molecular cross-linking, and (iv) evaluation of antigenicity using a 

monoclonal antibody developed previously to TDI conjugated to Keyhole limpet hemocyanin 

(KLH). Concentration-dependent increases in the amount of dNCO bound to HDI and TDI, cross-

linking, migration in gels, and antibody-binding were observed. TDI reactivity with both HSA and 

Hb was significantly higher than HDI. Hb-TDI antigenicity was approximately 30 % that of HSA-

TDI. In conclusion, this data suggests that both, the extent of haptenation as well as the degree of 
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cross-linking differs between the two diisocyanate species studied, which may influence their 

relative immunogenicity and/or antigenicity.
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Introduction

Diisocyanates (dNCOs) are highly reactive chemicals used as cross-linking agents in the 

manufacture of polyurethane products such as paints, elastomers, and adhesives1–3. They are 

potent sensitizers and are a commonly reported cause of occupational chemical 

hypersensitivity reactions including asthma4,5. 2, 4-Toluene diisocyanate (2, 4-TDI) and 1, 

6-hexamethylene diisocyanate (HDI) are among the most widely used isocyanates. Both 

have high vapor pressures6 and exposure often occurs through inhalation of vapors and 

aerosols during spraying operations at workplaces.

Immune-mediated hypersensitivity reactions to dNCOs include allergic rhinitis7, asthma8, 

hypersensitivity pneumonitis9,10 and allergic contact dermatitis11. Although most reported 

cases of isocyanate sensitization occur at workplaces13,14, it has been suggested that non-

occupational exposure to the general public may also occur through use of “do-it-yourself” 

free diisocyanate containing commercial products such as polyurethane foams and 

sprays15,16. Once allergic sensitization to isocyanates occurs, asthmatic reactions may be 

triggered by exceedingly minute concentrations of isocyanates5,17,18.

Diisocyanates are low-molecular-weight compounds that must first react with autologous 

proteins to produce a functional antigen19. The fate of the dNCO in the body and the protein 

adducts responsible for immunological sensitization remain unknown8. Apart from reacting 

with proteins at the site of exposure, protein conjugation by dNCOs may also occur via 

glutathione (GSH) thiocarbamate intermediates. GSH is abundant in the airways and 

Wisnewski and colleagues demonstrated that albumin can be conjugated to TDI and HDI by 

GSH-TDI and GSH-HDI, respectively20. HSA is the most common carrier protein used for 

dNCO antibody immunoassays21 due to its prevalence in plasma22 to form dNCO adducts. 

Other molecules, such as keratin 1822, tubulin23, and the peptide glutathione24, have been 

found to be modified by dNCO exposure. Sabbioni and coworkers reported MDI bound to 

the N-terminal valine of Hb in MDI exposed rats and proposed Hb–MDI as a biological 

marker of MDI exposure25.

There is currently no simple diagnosis for dNCO-induced occupational asthma (OA)26. One 

approach that can potentially be used is testing for dNCO-specific IgE from a worker’s 

serum. For confirmation of the diagnosis of dNCOas the etiological agent of the 

occupational asthma, these assays have been reported to be specific (96–98%), but not 

sensitive (18–27%)27. These low sensitivities have been attributed to both assay limitations 

and potential IgE-independent dNCO asthma mechanisms21. Immunoassay standardization 

is critical for improvement of immunoassay sensitivity and comparison of results across 

studies19. A number of factors that may confound results from these immunoassays include 
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the choice of dNCO used, the carrier protein employed, dNCO–protein reaction conditions, 

and post-reaction processing and characterization of the haptenated protein.

Wisnewski et al, in separate studies, reported differences in reactivity between TDI and HDI 

toward glutathione (GSH). Albumin was conjugated to TDI and HDI by GSH-TDI28 and 

GSH-HDI20, respectively. From these two reports, the kinetics of GSH-HDI mediated 

albumin carbamoylation was substantially slower compared with those of GSH-TDI. The 

hydrolysis of aliphatic isocyanates is also much slower than aromatic isocyanates. However, 

the nature and extent of HDI and TDI conjugation, in vivo, to serum proteins has not yet 

been reported. Diisocyanate haptenated proteins have been used both to produce specific 

antibodies29,30 and to screen for dNCO specific antibodies in workers’ sera for diagnosis of 

OA31.However, these conjugates are often poorly characterized and non-standardized.

Our previous work focused on characterization of methylene diphenyl diisocyanate (MDI)-

HSA and MDI-Hb conjugates32. Although HSA is the most common carrier protein used for 

dNCO antibody immunoassays21,22, other proteins, however, have also been found to be 

potentially modified by dNCO exposure22–25,33,34but the immunogenicity of adducted 

proteins other than albumins has not been reported.

One hypothesis is that the lack of a standard characterization protocol for conjugates used to 

screen for dNCO specific antibodies in workers' sera is contributing to the reported low 

sensitivities and variability of these assay methods. Our previous work on MDI shed light on 

the need to use multiple methods to characterize these conjugates. In the present study we 

extend the characterization of the dNCO-protein conjugates from MDI to understand 

reactivity differences among dNCOs such as TDI and HDI that can impact assay 

sensitivities and standardization protocols. Quantification of the amount of TDI and HDI 

bound per mole protein was conducted by analyses of the corresponding hydrolysis products 

following assay hydrolysis of the conjugate, derivitization of the diamines and HPLC 

florescence detection32. Cross linking was evaluated using the 2, 4, 6-trinitrobenzene 

sulphonic acid (TNBS) assay, which is a primary amine-specific spectrophotometric probe. 

TNBS reacts with primary amines in proteins to produce a complex that absorbs at 420 nm. 

Loss of TNBS reactivity in dNCO-conjugated proteins occurs only when the dNCO cross-

links two amine sites. This method, though not very sensitive, is very specific because only 

primary amines, the predominant sites found to be conjugated and cross-linked by dNCOs, 

react with TNBS. Gel electrophoresis was also used to qualitatively evaluate the extent of 

conjugation and cross linking in dNCO conjugated proteins. Under denaturing conditions 

intermolecular cross-linked proteins and highly substituted proteins have a larger molecular 

size in comparison to unconjugated protein and these tend to migrate slower. On the other 

hand, intramolecular cross-linking may prevent complete protein denaturation resulting in 

the migration similar to that of a smaller molecule that migrates faster. Proteomic mass 

spectrometry was employed to delineate TDI binding sites on Hb. Acrylonitrile adducted Hb 

and trimellitic anhydride (TMA)-adducted Hb were demonstrated to be antigenic35,36, so it 

is crucial to understand the reactivity of Hb to different dNCOs as well as to dNCO specific 

monoclonal antibodies relative to a well-documented dNCO reactive protein HSA.

Mhike et al. Page 3

J Immunol Methods. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and methods

Chemicals

Unless otherwise specified, all reagents were acquired from Sigma–Aldrich (St. Louis, MO, 

USA) and used without further purification. Dichloromethane (reagent grade) was purchased 

from J.T. Baker/Avantor Performance Materials (Center Valley, PA, USA). Sodium tetra 

borate, sodium hydroxide, hydrochloric acid, 98 % sulfuric acid, and N-acetyl glycine were 

purchased from Fisher Scientific (Fair Lawn, NJ, USA).

Preparation of TDI–HSA/Hb adducts

TDI–protein adducts were prepared as described previously for MDI-HSA/Hb conjugates32. 

Briefly, 0.5 mg/ml protein solutions were prepared in 0.01 M PBS (pH 7.4). TDI (42.3 µl) 

was dissolved in 1 ml dry acetone and diluted ten times to make stock solution for 40:1 TDI: 

protein. Serial dilutions of TDI in acetone were performed to make stock solutions for 10:1, 

5:1 and 1:1 TDI:protein. Fifty µL TDI stock solution was added to 5 ml of 0.5 mg/ml protein 

with mixing, resulting in TDI:protein molar conjugation ratios of 1:1, 5:1, 10:1, and 40:1. 

Samples were then incubated at room temperature (RT) for 1 h with mixing. Following 

incubation, samples were dialyzed for 18 h at 4°C against 4 L of distilled deionized water 

using 12,000–14,000 MWCO dialysis tubing (Spectrum Laboratories, Inc., Rancho 

Dominguez, CA) and stored at 4°C until analysis.

Preparation of HDI–HSA/Hb adducts

For preparation of HDI–protein adducts, 0.5 mg/ml protein solutions were prepared in 0.01 

M PBS (pH 7.4). HDI (47.3 µL) was dissolved in 1 ml dry acetone and diluted ten times to 

make stock solution for the 40:1 HDI:protein conjugation ratio. Serial dilutions of HDI in 

acetone were prepared to make solutions for 10:1, 5:1 and 1:1 HDI:protein conjugation 

ratios. Conjugations, dialysis and sample storage were performed as described for TDI 

samples.

Analysis of number of moles of dNCO bound per mole protein

TDI/HDI-conjugated proteins (2 ml aliquots) were hydrolyzed by incubating with 1 ml of 3 

M H2SO4 at 100°C for 16 h. Toluene diamine (TDA) and hexamethylene diamine (HDA) 

standards (Sigma–Aldrich, St. Louis, MO, USA) were spiked into protein standards (1–

16,000 ng/ml) and were run in parallel with conjugates. Following hydrolysis, samples and 

standards were cooled to RT and 5 ml of saturated sodium hydroxide was added. Samples 

were vortexed, and put in an ice bath to cool for 10 min. The resulting TDA and HDA from 

samples and standards were extracted into 6 ml of dichloromethane and the solvent was 

subsequently evaporated at 40°C under N2 to 1 ml. The dichloromethane extracts were then 

back-extracted into 500 µl of 0.5 % H2SO4. Saturated borate buffer (250 µl, pH 8.5) and 450 

µl of acetonitrile were added to 250 µl of H2SO4 extract and vortexed for 1 min. 

Fluorescamine (50 µl of 14.4 mg/ml in acetonitrile) was added. This was vortexed for 1 min, 

and 100 µl was injected onto a Supelco LC-SI C18 column (25 cm 4.6 mm, 5 µm, Supelco, 

Bellefonte, PA, USA). Samples and standards were analyzed on a Shimadzu Prominence 

high-performance liquid chromatography system (HPLC) (Shimadzu, Columbia, MD, USA) 
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consisting of an online vacuum degasser (model DGU-20A5), a quaternary pump (model 

LC-20AT), an auto sampler (model SIL-10AD-VP), and a fluorescence detector (model 

RF-10AXL). The HPLC system was controlled by EZ Start software version 7.3 (Lab 

Alliance, State College, PA, USA). Samples and standards were eluted from the column at 1 

ml/min over 20 min using a linear gradient of 10% to 50% acetonitrile/water over 13 min 

and held at 50% for 5 min. The resulting TDA/HDA–fluorescamine complex was excited at 

410 nm, and emission was measured at 510 nm.

Assessment of cross-linking: TNBS assay

The trinitrobenzene sulfonic acid (TNBS) assay was used to evaluate the extent of cross-

linking in TDI–HSA and HDI-HSA conjugates37. TNBS (5%, w/v) was diluted 1:5.48 with 

0.1 M borate buffer, pH 9.3. To 500 µl of sample, 12.5 µl of diluted TNBS was added, 

mixed and incubated for 30 min at RT. Absorbance at 420 nm was measured on a Beckman 

Coulter spectrophotometer (model DU 800, Beckman Coulter, Somerset, NJ, USA).

Assessment of cross-linking: Sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS-PAGE)

For denaturing gels, HSA, Hb, and TDI/HDI–HSA/Hb conjugates were mixed with 

Laemmli sample buffer containing 2-mercaptoethanol. Samples were run on 8% and 12% 

polyacrylamide gels. Following electrophoretic separation of proteins, the gels were stained 

with Imperial™ protein stain (Pierce, Rockford, IL, USA) and destained in water. 

Unmodified/unconjugated HSA, Hb and Bio-Rad pre-stained molecular weight markers 

(Life Science, Hercules, CA) were used for relative molecular weight determination.

Trypsin digestion of hemoglobin samples

For identification of TDI conjugation sites on Hb by ultra-performance liquid 

chromatography quadruple time-of-flight mass spectrometry (UPLC–qTOF MS), 200-µl 

aliquots of TDI–Hb samples were incubated with tributyl phosphine for 30 min at RT to 

reduce the disulfide bonds, followed by alkylation with iodoacetamide for 1 h at RT. 

Alkylation was quenched by further addition of tributyl phosphine for 15 min at RT. Porcine 

trypsin in 25 mM NH4HCO3 was then added at a 40:1 (protein/trypsin) ratio. Samples were 

incubated overnight at 37°C. The next day, 12 µL of 10 % triflouroacetic acid (TFA) was 

added to stop trypsin digestion.

Ultra-performance liquid chromatography (UPLC)

Tryptic peptides of Hb and TDI–Hb were separated on a Waters nanoACQUITY UPLC 

system (Waters, Milford, MA, USA). Aliquots (1 µl) of the digest mixture were injected and 

trapped/desalted on a 5-µm Symmetry C18 trapping column (180 µm × 20 mm) with 

99.5/0.5 A/B (A: 0.1% formic acid; B: 0.1% formic acid in acetonitrile) at a flow rate of 15 

µl/min for 1 min. Separation was performed on a 1.7-µm BEH130 C18 analytical column 

(100 µm × 100 mm) using gradient elution at a flow rate of 400 nl/min and a gradient of 

99:1 to 60:40 A/B over 90 min.
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Tandem Mass Spectrometry (MS/MS) analysis of Hb peptides

The eluent from the UPLC system was directed to the nano-electrospray source of a Waters 

SYNAPT MS qTOF mass spectrometer. Positive ion nano-electrospray was performed using 

10-µm Pico-Tip (Waters) emitters held at a potential of +3.5 kV. The cone voltage was held 

constant at +40 V for all experiments. Dry nitrogen desolvation gas was supplied to the 

instrument via a nitrogen generator (NitroFlowLab, Parker Hannifin, Haverhill, MA, USA). 

[Glu] 1-Fibrinopeptide B (100 fmol/µl in 75:25 A/B) was supplied to an orthogonal 

reference probe, and the [M+2H]2+ ion (m/z 785.84265u) was measured as an external 

calibrant at 30-s intervals. Ultra-high purity (UHP) argon was used as collision gas. Spectra 

were acquired in an “MSe” fashion38,39. Alternating 1-s mass spectra were acquired. The 

collision energy was set to 6 eV (1-s low energy scan) and a 15- to 30-eV ramp (1-s high 

energy scan).

Data analysis for TDI binding sites on Hb

Data were analyzed with BioPharmaLynx version 1.2 (Waters), a software program for 

analysis of peptide mass maps and identification of sites of modification on known protein 

sequences. Identification of an isocyanate binding site involved observing a potential 

peptide–dNCO conjugation product with less than 30 ppm m/Dm mass error in the analyte 

peptide mass map, comparing analyte and control peptide mass map from unmodified Hb 

showing that observed m/z and chromatographic retention time are unique to analyte, and 

observing MS/MS data containing bn- and yn-type ions consistent with the assigned 

sequence and modifier.

Immunoassay for conjugates: ELISA for TDI-HSA/Hb

Binding of IgG1 monoclonal antibody (mAb) 60G2 raised against TDI-KLH30 to TDI-

conjugated HSA and Hb was analyzed using an indirect enzyme-linked immunosorbent 

assay (ELISA). The development and characterization of the 60G2 mAb has been previously 

described by Ruwona et al30. Ninety-six-well plates (Corning, NY, USA) were coated with 

TDI-protein conjugates overnight at 4°C. After washing three times with PBST (PBS with 

0.05% Tween 20), plates were blocked with 3% skim milk/PBST (SMPBST) for 1 h at 

37°C. Plates were then incubated on a shaker for 1 h with 2 µg/ml 60G2 mAb at RT, washed 

three times with PBST and incubated for 1 h at 37°C with alkaline phosphatase conjugated 

AffiniPure goat, anti-mouse IgG (H+L) (Promega, Madison, WI) diluted 1:5000 (v/v) in 

SMPBST. Following incubation, plates were washed 3 times with PBST and binding of the 

60G2 mAb to the conjugates was visualized using 0.5 mg/ml p-nitrophenyl phosphate 

(Sigma–Aldrich, CAS Number 4264-83-9) in alkaline phosphatase substrate. The optical 

density was measured at 405 nm after 30 min using a Molecular Devices SpectraMax M4 

Multi-mode Micro plate Reader (Sunnyvale, CA, USA)

Statistical analysis

Data are presented as mean and standard deviation (SD). Analysis of variance (ANOVA) 

was employed for comparing the effect of dNCO and protein on the extent of conjugation 

and crosslinking on proteins. Differences were considered significant at a p < 0.05. N = 3/

group, where N is number of replicates.
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Results

Mapping TDI binding sites on Hb

TDI-Hb conjugates were digested with trypsin, and resultant peptides were analyzed by 

UPLC–MS/MS to determine TDI binding sites. Examination of the tandem mass spectra of 

the tryptic peptides allowed assignment of conjugation sites on Hb as previously 

described32. Hb has 2 alpha and 2 beta subunits and mass spectrometry allowed 

identification of the parent subunit from which each binding site originated. Table 1 shows 

the concentration-dependent specific binding sites identified for TDI on Hb.

A TDI concentration dependent increase in the number of binding sites was observed and a 

total of eight binding sites were identified at the highest concentration of TDI used, 

including the N-terminal valine on both the alpha and beta chains. TDI bound to three 

lysines on the alpha chain and three additional lysines on the beta chain. At the lowest TDI 

concentration used, only the two N-terminal valines of the alpha and beta chains were 

bound. Increasing TDI concentrations increased the number of sites bound to a maximum of 

eight at 40:1 TDI:Hb.

Quantification of TDI and HDI binding in Hb and HSA

TDI and HDI-conjugated HSA and Hb were hydrolyzed under strong acidic conditions and 

the resultant TDA and HDA were derivatized with fluorescamine and quantified using 

HPLC. Quantification of the number of moles of TDI and HDI bound to Hb and HSA is 

reported in Table 2. On a per mole basis, TDI was more reactive to both Hb and HSA than 

HDI over the entire concentration ranges used in this study. This agrees with findings from 

Wisnewski et al. who found that the rate of HSA carbamoylation from TDI-GSH derived 

TDI was higher than carbamoylation from HDI-GSH derived HDI20,28. Table 2 also 

demonstrates that HSA was more reactive to TDI than Hb. A similar trend was noted for 

HDI.

Cross-linking in TDI–and HDI-HSA: TNBS assay

Table 3 shows a concentration-dependent loss of available primary amines with increasing 

TDI and HDI concentrations and, thus, an increase in the amount of dNCO cross-linking of 

protein residues32. At TDI and HDI concentrations ranging from 1:1 to 10:1, the degree of 

cross linking is not statistically different between the 2 diisocyanates. However at 40:1 

dNCO: HSA, TDI has a significantly higher degree of cross linking than HDI (P-value < 

0.01). The TNBS assay could not be used to evaluate cross-linking in Hb conjugates because 

of spectral interference at 420 nm, the wavelength at which the absorbance of the complex 

between TNBS and primary amine is measured.

Qualitative assessment of conjugation and crosslinking in TDI/HDI–HSA and TDI/HDI– Hb: 
Gel electrophoresis

Polyacrylamide gel electrophoresis was used to evaluate the extent of binding and cross-

linking. Intermolecular cross-linked and highly substituted proteins will migrate at a slower 

rate than the unconjugated protein, whereas extensive intramolecular cross-linking may 

prevent complete protein denaturation, causing an apparent migration of a molecule smaller 
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that the unconjugated protein. Figure 1 shows an 8% SDS– PAGE gel of 0.5 mg/ml HSA 

reacted to TDI. Significant spreading of the HSA band was observed at the 40:1 TDI:HSA 

conjugation ratio. Figure 2 is a 12% denaturing gel of 0.5 mg/ml Hb reacted to TDI. 

Denaturation of Hb resulted in the incomplete dissociation of the alpha and beta subunits 

that migrated at molecular weights of approximately 14 kDa 28 kDa. Shift in migration due 

to conjugation to TDI was not observed. In contrast, HDI-HSA and HDI-Hb conjugates 

produced band spreading and shifts in migration/band spreading for both HSA and Hb 

conjugates. (Fig. 3 and 4).

ELISA assessment of TDI-HSA and TDI-Hb

HDI-Hb conjugates reactivity to antibodies was not evaluated due to the lack of an HDI 

specific antibody. Although there is cross reactivity between HDI and monoclonal 

antibodies raised against TDI, the reactivity was too low and close to detection limit to make 

any quantitative analysis in agreement with HPLC results. Binding of IgG mAb 60G2 to 

TDI-conjugated HSA and Hb was analyzed using an indirect enzyme-linked immunosorbent 

assay (ELISA). Figure 5 shows the immunoassay results of conjugated proteins following 

titration into the ELISA plate at protein concentrations from 97.66 ng/ml to 25 µg/ml. 

Immuno reactivity of 60G2 to the conjugated Hb was higher at 40:1 TDI-protein than 10:1 

in both HSA and Hb conjugates. 60G2 was more reactive to TDI-HSA than TDI-Hb at both 

40:1 and 10:1 TDI-protein.

Discussion

Our previous study employed several techniques to evaluate MDI-HSA and MDI-Hb 

conjugates32. In the current study, we extended use of this methodology to compare TDI–

HSA, TDI–Hb, HDI-HSA, and HDI-Hb conjugates. The objective was to compare the 

extent of conjugation of TDI and HDI to proteins (HSA and Hb), evaluate differences in the 

extent of cross-linking using the TNBS assay between TDI and HDI on HSA, and assess 

reactivity of TDI conjugated HSA and Hb with a monoclonal antibody (IgG 60G2 mAb) 

that recognizes TDI conjugated proteins. The methodology used herein is relevant for the 

characterization and standardization of dNCO haptenated protein for specific antibody 

detection. Although knowledge of specific sights bound at lower conjugation ratios may 

have value in the development of biomonitoring of dNCO conjugates in biological fluids, 

the measurement and characterization of in vivo formed species is beyond the scope of the 

present work. Differences in reactivity between TDI and HDI conjugated to HSA and Hb 

were observed using the HPLC quantification of moles dNCO bound per mole protein. HSA 

was more reactive to both TDI and HDI than Hb. This may be indicative of the structural 

differences between the two proteins. Hb, with four polypeptide subunits (two alpha and two 

beta) and an iron-containing porphyrin ring, may mask potential binding sites, thus affecting 

its reactivity with dNCOs. This contrasts sharply with HSA, a single polypeptide with 17 

pairs of disulfide bridges and 1 free cysteine. TDI was more reactive to both HSA and Hb 

than HDI at pH 7.4. These results agree with earlier findings where HSA was found to be 

the most modified protein in the blood of dNCO exposed subjects21. MS/MS was used to 

delineate specific TDI binding sites on Hb. A concentration-dependent increase in the 

number of binding sites was observed across the entire TDI concentration range employed. 
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Only the N terminal valines on both the alpha and beta subunits were observed at 1:1 TDI: 

Hb and these were conserved at all concentrations studied, suggesting that these sites are the 

kinetically favored reactive sites. Non-terminal amino acids of the beta subunit were bound 

by TDI only from 10:1 TDI:Hb concentrations and higher, while non-terminal amino acid 

binding sites on the alpha subunit were observed at 5:1 TDI:Hb. The non-terminal TDI 

binding sites observed on Hb were all lysine residues, specifically lysines 11, 16, and 40 of 

the alpha subunit and lysines 17, 144, and 61 of the beta subunit. Some of the TDI binding 

sites observed in this study were comparable to the MDI binding sites reported in our 

previous study32. In addition to the N-terminal valines of the alpha and beta subunits, lysine 

66 was also observed at 1:1 MDI:Hb. Only lysine 40 of the alpha subunit and lysine 61 of 

the beta subunit were bound by both MDI and TDI. Lysines 11 and 16 of the alpha subunit 

and lysines 17 and 144 of the beta subunit were only observed in TDI. In contrast, lysine 7 

of the alpha subunit and lysines 8, 65 and 66 of the beta subunit were only observed with 

MDI. The differences in the binding sites between MDI and TDI can give an insight into the 

possibility for conformational and structural differences in the resultant conjugates, which 

may potentially affect their antigenicity and immunogenicity.

The TNBS assay, which has traditionally been used to assess chemical adduction with 

amino groups40, was employed in this study to evaluate cross-linking in TDI-HSA and HDI-

HSA conjugates. A concentration dependent loss of available primary amines with 

increasing TDI and HDI concentrations was observed, indicating an increase in the amount 

of dNCO cross-linking of protein residues. At lower TDI and HDI concentrations (1:1–10:1 

TDI/HDI: HSA), the degree of cross-linking was similar for both dNCOs. At 40:1 dNCO: 

HSA, TDI had a higher degree of cross-linking than HDI. A 62% loss of primary amine 

reactivity was observed at 40:1 TDI:HSA compared with a 48% loss of amine reactivity at 

40:1 HDI:HSA (P < 0.01). A similar comparison could not be made for hemoglobin 

conjugates due to spectral interference at 420 nm, the wavelength at which the absorbance of 

the TNBS-amine complex was measured.

The ability of the TDI conjugates to be bound by TDI-specific antibody was evaluated using 

an indirect ELISA format. The ELISA format employed in the current study used an anti 

TDI–protein IgG that was produced in our lab against TDI-KLH17 as the primary antibody 

and an alkaline phosphatase-labeled anti-IgG as the detection antibody. Both TDI-HSA and 

TDI-Hb reacted to the anti-TDI-protein monoclonal antibody, indicating that TDI 

conjugated Hb can be antigenic. TDI-Hb antigenicity with the 60G2 mAb was however 30% 

lower than that observed for TDI-HSA. This is in agreement with HPLC results where TDI 

binding to HSA was significantly higher than to Hb suggesting that the absolute number of 

moles of dNCO bound rather than the specific protein bound is a greater determinant for 

recognition by the 60G2 mAb. The immunogenicity or antigenicity of in vivo dNCO-

adducted hemoglobin has not yet been reported in the literature, although our data suggest 

that dNCO haptenated HSA is superior to conjugated Hb for the detection of dNCO specific 

antibody.

Cross-linking and extent of conjugation was visualized using denaturing gel electrophoresis. 

Alteration of migration and band spreading was evident for both HDI and TDI conjugated 

HSAs at the highest conjugation ratio, however, a clear migration shift/band spreading was 
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only evident in HDI:HSA at the lower binding ratios (Figures 1 and 3). Hemoglobin 

subunits did not completely dissociate under denaturing conditions as evidenced by the 

protein band at approximately 28 kDa. Shift in migration of TDI bound Hb subunits was not 

observed, and only clearly observed at the highest HDI conjugation ratio of 40:1 (Figures 2 

and 4). These finding are in contrast to what was previously observed for MDI, where clear 

conjugation-dependent shifts in migration were observed down to a 1:1 conjugation ratio.32 

One possible explanation for the differences seen between SDS-Page between that observed 

for HDI, MDI and TDI bound proteins may be that location of the 2 TDI NCO groups 

located on the benzene ring are spatially closer to each other than in MDI or HDI which may 

produce differences in comparative migration of the conjugates in the SDS-Page gels.

Increasing molar ratio for conjugation increased extent of conjugation, degree of cross-

linking, gel migration and reactivity with dNCO specific monoclonal antibody binding. It is 

therefore difficult to dissect the specific influences of intra- and intermolecular cross-linking 

from total dNCO bound on the overall antigenicity of the resultant conjugates.

The bifunctional electrophilic nature of the diisocyanates make it very difficult to dissect out 

the components critical to dNCO specific antibody recognition.

Increases in total amount of dNCO bound, intra- and intermolecular crosslinking, and dNCO 

self-polymerization on proteins, and as well as recognition by the 60G2 mAb all increase 

were demonstrated with increasing conjugation ratios of dNCO:protein. The mAb 60G2 is 

extremely well characterized with respect to binding specificity (30). It recognizes both 2,4-

TDI and 2,6-TDI bound HSA, bound mouse serum albumin, and bound keratin. It has slight 

reactivity toward MDI-HSA, HDI-HSA and HSA conjugated to 2,5- and 3,4- dimethyl 

phenylisocyanate. It has no reactivity toward phenyl isocyanate, 2-toluene isocyanate, 4-

toluene isocyanate or toluene diisothiocyanates. Although, dNCO specific IgE and IgG from 

dNCO exposed individuals was not tested against the various dNCO conjugated proteins, 

others have reported that recognition by patient sera antibodies is dependent on 

immunoassay procedure, conjugation method and predominant exposure dNCO form to that 

individual41,42. Comparison of specific antibody prevalence in dNCO workers is difficult in 

the absence of detailed dNCO-HSA characterization. Until the relative contribution of the 

multiple dNCO conjugation products to dNCO immunogenicity and antigenicity can be 

determined, we believe that dNCO antigen preparations used for standardized screening of 

workers’ sera or research applications should undergo as complete quantitative chemical 

characterization as possible similar to that outlined in the present manuscript.
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Figure 1. 
An 8% SDS– PAGE denaturing gel of 0.5 mg/ml HSA reacted to TDI. Lane 1 is the 

molecular weight marker, lane 2 is HSA, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1 

TDI: HSA, respectively.
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Figure 2. 
A 12% denaturing gel of 0.5 mg/ml Hb reacted to TDI. Lane 1 is the molecular weight 

marker, lane 2 is Hb, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1 TDI: Hb, 

respectively.
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Figure 3. 
An 8% denaturing gel of 0.5 mg/ml HSA reacted to HDI. Lane 1 is the molecular weight 

marker, lane 2 is HSA, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1 HDI: HSA, 

respectively.
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Figure 4. 
A 12% denaturing gel of 0.5 mg/ml Hb reacted to HDI. Lane 1 is the molecular weight 

marker, lane 2 is Hb, and lanes 3, 4, 5, and 6 are 40:1, 10:1, 5:1, and 1:1 HDI: Hb, 

respectively.
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Figure 5. 
Comparison of 60G2 mAb binding to TDI conjugated Hb and TDI conjugated HSA. ELISA 

absorbances curves for 40:1 and 10:1 TDI:protein conjugation ratios at multiple dilutions 

demonstrate superior binding of the mAb to TDI-HSA on a per mass basis..
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Table 1

Amino acid specific binding sites observed for TDI on hemoglobin

1:1 5:1 10:1 40:1

Alpha subunit

Val 1 x x x x

Lys 11 x x x

Lys 16 x x

Lys 40 x

Beta subunit

Val 1 x x x x

Lys 17 x x

Lys 144 x x

Lys 61 x
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Table 2

Moles of TDI and HDI bound per mole of Hb or HSA quantified using HPLC

dNCO: protein Average moles of dNCO bound Average moles of dNCO bound

TDI: HSA HDI: HSA TDI: Hb HDI: Hb

1:1 0.51 ± 0.56 0.04 ± 0.41** 0.15 ± 0.15## 0.02 ± 0.21**

5:1 2.65 ± 0.23 0.44 ± 0.45** 0.57 ± 0.02## 0.13 ± 0.23**

10:1 5.06 ± 0.43 0.82 ± 0.36* 1.48 ± 0.09## 0.32 ± 0.60**

40:1 12.86 ± 0.56 2.79 ± 0.40* 4.31 ± 0.06## 1.03 ± 0.59**

Extent of HDI binding to HSA is statistically different than TDI binding (*P<0.05; **P<0.01) Comparison of dNCO binding to HSA vs. to Hb.

(##P<0.01)
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Table 3

Cross-linking in TDI-HSA and HDI-HSA using loss of absorbance: TNBS assay.

dNCO: protein molar ratio Loss of TNBS Amine reactivity (%)

HDI: HSA 2,4-TDI: HSA

Negative control 0.00 ± 0.00 0.00 ± 0.00

1:1 25.46 ± 2.34 18.04 ± 3.98

5:1 30.24 ± 2.89 31.47 ± 3.57

10:1 32.88 ± 3.14 39.92 ± 4.14

40:1 48.35 ± 3.76 62.42 ± 4. 18**

**
Extent of TDI cross-linking statistically different than HDI (P<0.01)
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